<table>
<thead>
<tr>
<th>SOIL SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdA</td>
<td>Allendale loamy sand, 0 to 3 percent slopes – Somewhat poorly drained, nearly level and gently sloping loamy sand soil that has a sand upper subsoil to about 26 inches and a silty clay lower subsoil which is underlain by a silty clay substratum at about 30 inches. Permeability is rapid in the upper subsoil and slow or very slow in the lower subsoil and in the substratum. Available water capacity is moderate. Seasonal water table is less than 1 foot. Management concerns for crop production are wetness, soil blowing and droughtiness when drained. This soil is not suited to septic tank absorption fields because of wetness and slow percolation.</td>
</tr>
<tr>
<td>ApC</td>
<td>Alpena gravelly sandy loam, at 12 percent slopes – Excessively drained, nearly level to sloping gravelly sandy loam soil that is underlain by sand and gravel at 4 to 10 inches. Permeability is very rapid. Available water capacity is very low. Seasonal water table is at a depth of more than 6 feet. This soil is generally not suited to crop production because of droughtiness. This soil is suited to septic tank absorption fields but because of very rapid permeability it does not adequately filter the effluent.</td>
</tr>
<tr>
<td>Ax</td>
<td>Angelica loam – Poorly drained nearly level loam soil that has loam subsoil, which is underlain by a loam substratum at 16 to 30 inches. Permeability is moderately slow. Available water capacity is high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness and short growing season between frosts. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>Be</td>
<td>Beaches – Sandy beach deposits that are submerged when lake level or waves are high. This unit is not suited to crop production or septic tank absorption fields because of wetness and wave action.</td>
</tr>
<tr>
<td>Bn</td>
<td>Bonduel loam – Somewhat poorly drained, nearly level loam soil that has a loam and clay loam subsoil which is underlain by dolomite bedrock at 20 to 40 inches. Permeability is moderate to the bedrock. Available water capacity is low. Seasonal water table is at 1 to 3 feet. Management concerns for crop production are wetness and depth to bedrock. This soil is not suited to septic tank absorption fields because of wetness and depth to bedrock.</td>
</tr>
<tr>
<td>Bo</td>
<td>Bonduel Shallow Variant fine sandy loam – Somewhat poorly drained, nearly level fine sandy loam soil that has a loam and sandy loam subsoil which is underlain by dolomite bedrock at 10 to 20 inches. Permeability is moderate to the bedrock. Available water capacity is low. Seasonal water table is at 1 to 3 feet. Management concerns for crop production are wetness and depth to bedrock. This soil is not suited to septic tank absorption fields because of wetness and depth to bedrock.</td>
</tr>
<tr>
<td>Bp</td>
<td>Bonduel Wet Variant loam – Poorly drained nearly level loam soil that has a loam subsoil which is underlain by dolomite bedrock at 20 to 40 inches. Permeability is moderate to the bedrock. Available water capacity is low. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness, depth to bedrock, and short growing season between frosts. This soil is not suited to septic tank absorption fields because of wetness, ponding, and depth to bedrock.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>BrB</td>
<td>Boyer loamy sand, 2 to 6 percent slopes – Well drained gently sloping loamy sand soil that has a fine sandy loam and sandy loam subsoil which is underlain by a sand and gravel substratum at 24 to 40 inches. Permeability is moderately rapid in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are soil blowing, erosion, and droughtiness. This soil is suited to septic tank absorption fields, but because of the very rapid permeability, it does not adequately filter the effluent.</td>
</tr>
<tr>
<td>BrC</td>
<td>Boyer loamy sand, 6 to 12 percent slopes – Well drained, sloping loamy sand soil that has a sandy loam subsoil which is underlain by a sand and gravel substratum at 24 to 36 inches. Permeability is moderately rapid in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table if at a depth of more than 6 feet. Management concerns for crop production are erosion, soil blowing, and droughtiness. This soil is suited to septic tank absorption fields, but because of the very rapid permeability, it does not adequately filter the effluent. Special design during construction is also needed to overcome the slope.</td>
</tr>
<tr>
<td>BrD</td>
<td>Boyer loamy sand, 12 to 20 percent slopes – Well drained, moderately steep loamy sand soil that has a sandy loam subsoil which is underlain by a sand and gravel substratum at 20 to 36 inches. Permeability is moderately rapid in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Seasonal water crop production are slope, erosion, soil blowing, and droughtiness. This soil is suited to septic tank absorption fields, but because of the very rapid permeability, it does not adequately filter the effluent. Planning and special design during construction is also needed to overcome the slope. There is also danger of downslope surfacing of effluent.</td>
</tr>
<tr>
<td>Ca</td>
<td>Carbondale muck – Very poorly drained, nearly level much soil that is more than 51 inches thick. Permeability is moderately rapid. Available water capacity is very high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness, ponding, short growing season between frosts, and poor trafficability because of the soft nature of the muck. This soil is not suited to septic tank absorption fields because wetness and ponding.</td>
</tr>
<tr>
<td>CcB</td>
<td>Casco sandy loam, 2 to 6 percent slopes – Well drained, gently sloping sandy loam soil that has a sandy clay loam and gravelly loam subsoil which is underlain by a sand and gravel substratum at 10 to 24 inches. Permeability is moderate in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, soil blowing, and droughtiness. This soil is suited to septic tank absorption fields, but because of the very rapid permeability, it does not adequately filter the effluent.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CcC2</td>
<td>Casco sandy loam, 6 to 12 percent slopes, eroded – Well drained, sloping, eroded sandy loam soil that has a sandy clay loam and gravelly loam subsoil which is underlain sand and gravel at 10 to 20 inches. This soil has lost 1/3 to 2/3 of the original topsoil by erosion. Permeability is moderate in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion and droughtiness. This soil is suited to septic tank absorption fields, but because of the very rapid permeability, it does not adequately filter the effluent. Special design is also needed during construction to overcome the slope.</td>
</tr>
<tr>
<td>Cm</td>
<td>Cathro muck – very poorly drained, nearly level muck soil that is underlain by a loam substratum at 16 to 51 inches. Permeability is moderately slow in the substratum. Available water capacity is very high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness, ponding, short growing season between frosts, and poor trafficability because of the soft nature of the muck. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>Cp</td>
<td>Chippeny muck – Very poorly drained, nearly level muck soil that is underlain by dolomite bedrock at 24 to 51 inches. Permeability is moderately rapid to the bedrock. Available water capacity is moderate or high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness, ponding, short growing season between frosts, depth to bedrock, and poor trafficability because of the soft nature of the muck. This soil is not suited to septic tank absorption fields because of wetness, ponding and depth to bedrock.</td>
</tr>
<tr>
<td>De</td>
<td>Deford loamy fine sand – Poorly drained, nearly level loamy fine sand soil that is underlain by a fine sand substratum at 4 to 8 inches. Permeability is rapid. Available water capacity is low. Seasonal water table is at less than one foot or is ponded above the surface. Management concerns for crop production are wetness, ponding, short growing season between frosts, and when drained by soil blowing and droughtiness. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>DuB</td>
<td>Duel loamy sand, 1 to 6 percent slopes – Well drained, nearly level and gently sloping loamy sand soil that has a sand subsoil which is underlain by a loamy and substratum to about 28 inches and dolomite bedrock below 28 inches. Permeability is rapid to the bedrock. Available water capacity is very low. Seasonal water table is at a depth of more than six feet. Management concerns for crop production are soil blowing, erosion, droughtiness, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>Dv</td>
<td>Duel Variant sandy loam – Somewhat poorly drained, nearly level sandy loam soil that is underlain by a sand substratum which is underlain by dolomite bedrock at 24 to 40 inches. Permeability is rapid to the bedrock. Available water capacity is very low. Seasonal water table is at one to three feet. Management concerns for crop production are wetness, depth to bedrock, and when drained by droughtiness and soil blowing. This soil is not suited to septic tank absorption fields because of wetness and depth to bedrock.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EmA (7501)</td>
<td>Emmet sandy loam, 0 to 2 percent slopes – Well drained, nearly level sandy loam soil that has a loam and sandy loam subsoil which is underlain by a sandy loam substratum at 24 to 40 inches. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than six feet. Management concern for crop production is soil blowing. This soil is often not suited to septic tank absorption fields because of moderately slow percolation.</td>
</tr>
<tr>
<td>EmB (7208)</td>
<td>Emmet sandy loam, 2 to 6 percent slopes – Well drained, gently sloping sandy loam soil that has a loam and sandy loam subsoil which is underlain by a sandy loam subsoil at 24 to 40 inches. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion and soil blowing. This soil is often not suited to septic tank absorption fields because of moderately slow percolation.</td>
</tr>
<tr>
<td>EmC2 (7201)</td>
<td>Emmet sandy loam, 6 to 12 percent slopes, eroded – Well drained, sloping, eroded sandy loam soil that has a loam and sandy loam substratum at 24 to 36 inches. This soil has lost 1/3 to 2/3 of the original topsoil by erosion. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion and soil blowing. This soil is often not suited to septic tank absorption fields because of moderately slow percolation.</td>
</tr>
<tr>
<td>EmD2 (7204)</td>
<td>Emmet sandy loam, 12 to 20 percent slopes, eroded – Well drained, moderately steep, eroded sandy loam soil that has a loam and sandy loam subsoil which is underlain by a sandy loam substratum at 24 to 36 inches. This soil has lost 1/3 to 2/3 of the original topsoil for erosion. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, slope, and soil blowing. This soil is often not suited to septic tank absorption fields because of moderately slow percolation. Special design is needed during construction to overcome the slope.</td>
</tr>
<tr>
<td>EmE (7203)</td>
<td>Emmet sandy loam, 20 to 35 percent slopes – Well drained, steep and very steep sandy loam soil that has a loam and a sandy loam subsoil which is underlain by a sandy loam substratum at 24 to 36 inches. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. This soil is generally not suited to crop production because of slope and erosion. This soil is generally not suited to septic tank absorption fields because of slope and dangers of down slope surfacing of effluent.</td>
</tr>
<tr>
<td>Fa</td>
<td>Fabius silt loam, 0 to 2 percent slopes – somewhat poorly drained, nearly level silt loam soil that has a sandy clay loam and sandy loam subsoil which is underlain by a sand and gravel substratum at 10 to 24 inches. Permeability is moderately rapid in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table is at 1 to 2 feet. Management concerns for crop production are wetness and when drained by droughtiness. This soil is not suited to septic tank absorption fields because of wetness.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fu</td>
<td>Fluvaquents – Poorly drained, nearly level soils on floodplains that are subject to frequent flooding. Texture ranges from gravelly sand to clay loam. Soil properties are too variable to rate. This unit is generally not suited to cropland because of frequent flooding. It is not suited to septic tank absorption fields because of wetness and flooding.</td>
</tr>
<tr>
<td>Gp</td>
<td>Gravel pits – Areas from which gravel has been excavated for construction uses. Soil properties are variable. The main management concerns are leveling and reclaiming of the area.</td>
</tr>
<tr>
<td>KhA</td>
<td>Kewaunee silt loam, 0 to 2 percent slopes – Well drained and moderately well drained, nearly level silt loam soil that has a clay loam and silty clay subsoil which is underlain by a silty clay substratum at 20 to 40 inches. Permeability is slow or moderately slow. Available water capacity is moderate. Seasonal water table is generally at a depth of more than 6 feet but water may pond on the surface during wet periods. Management concern for crop production is controlling the localized ponding. This soil is not suited to septic tank absorption fields because of the slow percolation.</td>
</tr>
<tr>
<td>KhB</td>
<td>Kewaunee silt loam, 2 to 6 percent slopes – Well drained, gently sloping silt loam soil that has a clay loam and silty clay subsoil which is underlain by a silty clay substratum at 20 to 40 inches. Permeability is slow or moderately slow. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concern for crop production is erosion. This soil is not suited to septic tank absorption fields because of slow percolation.</td>
</tr>
<tr>
<td>KhC2</td>
<td>Kewaunee silt loam, 6 to 12 percent slopes, eroded – Well drained, sloping, eroded silt loam soil that has a clay loam and silty clay subsoil, which is underlain by a silty clay substratum at 20 to 36 inches. This soil has lost 1/3 to 2/3 of the original topsoil by erosion. Permeability is moderately slow. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion and tilth. This soil is not suited to septic tank absorption fields because of slow percolation.</td>
</tr>
<tr>
<td>KkD3</td>
<td>Kewaunee soils, 12 to 20 percent slopes, several eroded – Well drained, moderately steep, several eroded clay loam soil that has a silty clay subsoil which is underlain by a silty clay substratum at 20 to 30 inches. This soil has lost all of the original topsoil and the present surface layer is the upper part of the subsoil. Permeability is moderately slow. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, tilth, and slope. This soil is not suited to septic tank absorption fields because of slow percolation.</td>
</tr>
<tr>
<td>KmB</td>
<td>Kiva sandy loam, 2 to 6 percent slopes – Well drained, gently sloping sandy loam soil that has a sandy loam subsoil which is underlain by a sand and gravel substratum at 10 to 24 inches. Permeability is moderate in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, droughtiness and soil blowing. This soil is suited to septic tank absorption fields, but because of the very rapid permeability, it does not adequately filter the effluent.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>KmC</td>
<td>Kiva sandy loam, 6 to 12 percent slopes – Well drained, sloping sandy loam soil that has a sandy loam subsoil which is underlain by a sand and gravel substratum at 10 to 24 inches. Permeability is moderate in the subsoil and very rapid in the substratum. Available water capacity is low. Seasonal water table is at a depth of more than 60 inches. Management concerns for crop production are erosion, droughtiness, and soil blowing. This soil is suited to septic tank absorption fields, but because of the very rapid permeability, it does not adequately filter the effluent. Special design is needed during construction to overcome the slope.</td>
</tr>
<tr>
<td>KoA</td>
<td>Kolberg silt loam, 0 to 2 percent slopes – Well drained, nearly level silt loam soil that has a clay loam, silty clay, and silty clay loam subsoil which is underlain by a loam substratum which is underlain by dolomite bedrock at 20 to 40 inches. Permeability is slow and moderately slow to the bedrock. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production is brief ponding of water during wet periods in some places. This soil is suited to septic tank absorption fields because of the slow percolation and depth to bedrock.</td>
</tr>
<tr>
<td>KoB</td>
<td>Kolberg silt loam, 2 to 6 percent slopes - Well drained, gently sloping silt loam soil that has a clay loam, silty clay, and silty clay loam subsoil which is underlain by a loam substratum which is underlain by dolomite bedrock at 20 to 40 inches. Permeability is slow or very slow to the bedrock. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concern for crop production is erosion. This soil is not suited to septic tank absorption fields because of slow percolation and depth to bedrock.</td>
</tr>
<tr>
<td>KoC2</td>
<td>Kolberg silt loam, 6 to 12 percent slopes, eroded - Well drained, sloping, eroded silt loam soil that has a clay loam, silty clay, and silt clay loam subsoil which is underlain by a loam substratum which is underlain by dolomite to bedrock at 20 to 36 inches. This soil has lost 1/3 to 2/3 of the original topsoil by erosion. Permeability is slow or moderately slow to the bedrock. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concern for crop production is erosion. This soil is not suited to septic tank absorption fields because of slow percolation and depth to bedrock.</td>
</tr>
<tr>
<td>KvB</td>
<td>Kolberg Variant loam, 1 to 6 percent slopes - Well drained, nearly level and gently sloping loam soil that has a loam and clay loam subsoil which is underlain by dolomite bedrock at 12 to 24 inches. Permeability is moderately slow to the bedrock. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, droughtiness, and depth to rock. This soil is not suited to septic tank absorption fields because of depth of rock.</td>
</tr>
<tr>
<td>KvC2</td>
<td>Kolberg Variant loam, 6 to 12 percent slopes, eroded - Well drained, sloping, eroded loam soil that has a clay loam subsoil which is underlain by dolomite bedrock at 12 to 20 inches. This soil has lost 1/3 to 2/3 of the original topsoil by erosion. Permeability is moderately slow to the bedrock. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, droughtiness, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>LDF</td>
<td>Landfill</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LoA</td>
<td>Longrie loam, 0 to 2 percent slopes - Well drained, nearly level loam soil that has a sandy loam and loam subsoil which is underlain by a fine sandy loam substratum which is underlain by dolomite bedrock at 20 to 40 inches. Permeability is moderate to the bedrock. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are droughtiness and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>LoB</td>
<td>Longrie loam, 2 to 6 percent slopes - Well drained, gently sloping loam soil that has a sandy loam and loam subsoil which is underlain by a fine sandy loam substratum which is underlain by dolomite bedrock at 20 to 40 inches. Permeability is moderate to the bedrock. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, droughtiness, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>LoC</td>
<td>Longrie loam, 6 to 12 percent slopes, eroded - Well drained, sloping, eroded loam soil that has a sandy loam and loam subsoil which is underlain by a fine sandy loam substratum which is underlain by dolomite bedrock at 20 to 40 inches. This soil has lost 1/3 to 2/3 of the original topsoil by erosion. Permeability is moderate to the bedrock. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, droughtiness, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>M-W</td>
<td>Miscellaneous Water</td>
</tr>
<tr>
<td>McA</td>
<td>Manawa silt loam, 0 to 3 percent slopes - Somewhat poorly drained, nearly level and gently sloping silt loam sod that has a silty clay subsoil which is underlain by a silty clay substratum at 20 to 36 inches. Permeability is slow. Available water capacity is moderate. Seasonal water table is at 1 to 3 feet. Management concern for crop production is wetness. This soil is not suited to septic tank absorption fields because of wetness and slow percolation.</td>
</tr>
<tr>
<td>MeB</td>
<td>Manistee loamy sand, 2 to 6 percent slopes - Well drained, gently sloping loamy sand sod that has a sand upper subsoil to about 34 inches and a silty clay lower subsoil to about 38 inches which is underlain by a silty clay substratum below 38 inches. Permeability is rapid in the upper subsoil and slow or very slow in the lower subsoil and in the substratum. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are soil blowing, droughtiness, and erosion. This soil is not suited to septic tank absorption fields because of slow percolation.</td>
</tr>
<tr>
<td>Mk</td>
<td>Markey muck - Very poorly drained, nearly level much soil that is underlain by a sand substratum at 16 to 51 inches. Permeability is moderately rapid in the muck and rapid in the substratum. Available water capacity is very high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness, ponding, subsidence, short growing season between frosts, and poor trafficability because of the soft nature of the muck. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NaB</td>
<td>Namur loam, 0 to 6 percent slopes - Well drained, nearly level and gently sloping loam soil that is underlain by dolomite bedrock at 5 to 12 inches. Permeability is moderate to the bedrock. Available water capacity is very low. Seasonal water table is at a depth of more than 6 feet. This soil is not suited to crop production because of droughtiness and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth of bedrock.</td>
</tr>
<tr>
<td>NaC</td>
<td>Namur loam, 6 to 12 percent slopes - Well drained, sloping loam soil that is underlain by dolomite bedrock at 5 to 12 inches. Permeability is moderate to the bedrock. Available water capacity is very low. Seasonal water table is at a depth of more than 6 feet. This soil is not suited to crop production because of droughtiness, erosion, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth of bedrock.</td>
</tr>
<tr>
<td>Nv</td>
<td>Namur Variant loam - Somewhat poorly drained, nearly level loam soil that is underlain by dolomite bedrock at 5 to 10 inches. Permeability is moderate to the bedrock. Available water capacity is very low. Seasonal water table is at 1 to 3 feet. This soil is not suited to crop production because of depth to bedrock and wetness. This soil is not suited to septic tank absorption fields because of wetness and depth to bedrock.</td>
</tr>
<tr>
<td>OmB</td>
<td>Omena sandy loam, 2 to 6 percent slopes - Well drained, gently sloping sandy loam soil that has a loam subsoil which is underlain by a sandy loam substratum at 14 to 20 inches. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion and soil blowing. This soil is suited to septic tank absorption fields.</td>
</tr>
<tr>
<td>OmC</td>
<td>Omena sandy loam, 6 to 12 percent slopes - Well drained, sloping sandy loam soil that has a loam subsoil which is underlain by a sandy loam substratum at 14 to 20 inches. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion and soil blowing. This soil is suited to septic tank absorption fields but special design is needed to overcome the slope.</td>
</tr>
<tr>
<td>OmD</td>
<td>Omena sandy loam, 12 to 20 percent slopes – Well drained, moderately steep, sloping sandy loam soil that has a loam subsoil which is underlain by a sandy loam substratum at 14 to 20 inches. Permeability is moderate in the subsoil and moderately rapid in the substratum. Available water capacity is moderate. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion and soil blowing. This soil is suited to septic tank absorption fields but special design is needed to overcome the slope.</td>
</tr>
<tr>
<td>OvB</td>
<td>Omena Variant sandy loam, 2 to 6 percent slopes - Somewhat poorly drained, gently sloping sandy loam soil that has a loam and fine sandy loam subsoil which is underlain by a fine sandy loam substratum at 12 to 20 inches. Permeability is moderate. Available water capacity is high. Seasonal water table is at 1 to 3 feet. Management concern for crop production is wetness. This soil is not suited to septic tank absorption fields because of wetness.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OzB</td>
<td>Omro silt loam, 2 to 6 percent slopes - Well drained, gently sloping silt loam soil that has a clay loam and silty clay subsoil which is underlain by a fine sandy loam substratum at 20 to 32 inches. Permeability is slow or moderately slow in the subsoil and moderate in the substratum. Available water capacity is high. Seasonal water table is at a depth of more than 6 feet. Management concern for crop production is erosion. This soil is not suited to septic tank absorption fields because of slow percolation in the subsoil. Installing into the substratum may overcome this problem.</td>
</tr>
<tr>
<td>Pn</td>
<td>Pinconning loamy fine sand - Poorly drained, nearly level loamy sand that is underlain by a fine sand upper substratum at 18 to 36 inches and a silt clay lower substratum below 18 to 36 inches. Permeability is rapid in the upper substratum and slow in the lower substratum. Available water capacity is moderate. Seasonal water table is at less than 4 feet or is ponded above the surface. Management concerns for crop production are wetness and soil blowing. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>Po</td>
<td>Poygan silty clay loam - Poorly drained, nearly level silty clay loam soil that has a silty clay loam and silty clay subsoil which is underlain by a silty clay substratum at 20 to 30 inches. Available water capacity is moderate. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concern for crop production is wetness. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>PwA</td>
<td>Poygan silty clay loam - Poorly drained, nearly level silty clay loam soil that has a silty clay loam and silty clay subsoil which is underlain by a silty clay substratum at 20 to 30 inches. Available water capacity is moderate. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concern for crop production is wetness. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>QUA</td>
<td>Quarry</td>
</tr>
<tr>
<td>Ra</td>
<td>Rock outcrop - this map unit consists of more than 90 percent dolomite bedrock outcrops. This map unit is not suited to crop production or septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>Rb</td>
<td>Rock outcrop - Namur complex, 6 to 20 percent slopes - Well drained to excessively drained, sloping to moderately steep shallow loamy soils that are intermingled within dolomite outcrops. Exposed dolomite bedrock makes up 75 to 90 percent of this unit. This map unit is not suited to crop production or septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>Rn</td>
<td>Rondeau muck - Very poorly drained, nearly level muck soil that is underlain by marl at 16 to 51 inches. Permeability is moderately rapid in the muck and slow or very slow in the marl. Available water capacity is very high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness, ponding, subsidence, short growing season between frosts and poor trafficability because of the soft nature of the muck. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RoB</td>
<td>Rousseau fine sand, 2 to 6 percent slopes - Well drained and moderately well drained, gently sloping fine sand soil that has a fine sand subsoil which is underlain by a fine sand substratum at 20 to 32 inches. Permeability is rapid. Available water capacity is low. Seasonal water table is at 3 feet to more than 6 feet. Management concerns for crop production are soil blowing and droughtiness. This soil is suited to septic tank absorption fields, but because of the rapid permeability it does not adequately filter the effluent. Some areas are also limited by wetness.</td>
</tr>
<tr>
<td>RoC</td>
<td>Rousseau fine sand, 2 to 12 percent slopes - Well drained and excessively drained, gently sloping and sloping fine sand soil that are too mixed to separate. Permeability is rapid. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are soil blowing, droughtiness, and erosion. These soils are suited to septic tank absorption fields, but because of the rapid permeability they do not adequately filter the effluent. Special design is also needed during construction to overcome the slope.</td>
</tr>
<tr>
<td>RpC</td>
<td>Rousseau-Shawano fine sands, 2 to 12 percent slopes - Well drained and excessively drained, gently sloping and sloping fine sand soil that are too mixed to separate. Permeability is rapid. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are soil blowing, droughtiness, and erosion. These soils are suited to septic tank absorption fields, but because of the rapid permeability they do not adequately filter the effluent. Special design is also needed during construction to overcome the slope.</td>
</tr>
<tr>
<td>RpD</td>
<td>Rousseau-Shawano fine sands, 12 to 35 percent slopes - Well drained and excessively drained, moderately steep to very steep fine sand soils that are too mixed to separate. Permeability is rapid. Available water capacity is low. Seasonal water table is at a depth of more than 6 feet. These soils are generally not suited to crop production because of soil blowing, erosion, droughtiness, and slope. These soils are suited to septic tank absorption fields, but because of the rapid permeability, they do not adequately filter the effluent. Special design is needed during construction to overcome the slope.</td>
</tr>
<tr>
<td>RrB</td>
<td>Rousseau-Deford fine sands, 2 to 6 percent slopes - Well drained to poorly drained, gently sloping fine sand soils that are too mixed to separate. Permeability is rapid. Available water capacity is low. Seasonal water table is at less than 1 foot to more than 6 feet. Management concerns for crop production are soil blowing, droughtiness, and wetness. Most areas of these soils are not suited to septic tank absorption fields because of wetness.</td>
</tr>
<tr>
<td>Sa</td>
<td>Saprists, 0 to 2 percent slopes - very poorly drained, nearly level areas of muck soils that are covered by shallow water during most of the year. Soil properties are too variable to rate. This map unit is not suited to crop production or septic tank absorption fields because of ponding and wetness.</td>
</tr>
<tr>
<td>SnA</td>
<td>Sission fine sandy loam, 0 to 2 percent slopes - Well drained, nearly level fine sandy loam soil that has a fine sandy loam and loam subsoil which is underlain by a bonded silt and very fine sand substratum at 24 to 40 inches. Permeability is moderate. Available water capacity is high. Seasonal water table is at a depth of more than 6 feet. Management concern for crop production is soil blowing. This soil is not suited to septic tank absorption fields because of moderately slow percolation.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SnB</td>
<td>Sission fine sandy loam, 2 to 8 percent slopes - Well drained gently sloping and sloping fine sandy loam soil that has a fine sandy loam and loam subsoil which underlain by a bonded silt and very fine sand substratum at 24 to 40 inches. Permeability is moderate. Available water capacity is high. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are soil blowing and erosion. This soil is often not suited to septic tank absorption fields because of moderately slow percolation.</td>
</tr>
<tr>
<td>SoA</td>
<td>Solona loam, 0 to 3 percent slopes - Somewhat poorly drained, nearly level and gently sloping loam soil that has a silt loam and loam subsoil which is underlain by a sandy loam substratum at 24 to 30 inches. Permeability is moderate. Available water capacity is moderate. Seasonal water table is at 1 to 3 feet. Management concern for crop production is wetness. This soil is not suited to septic tank absorption fields because of wetness.</td>
</tr>
<tr>
<td>Su</td>
<td>Suamico muck - Very poorly drained, nearly level muck soil that is underlain by a silty clay substratum at 16 to 51 inches. Permeability is moderately rapid in the muck and slow in the substratum. Available water capacity is very high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concerns for crop production are wetness, ponding, subsidence, short growing season between frosts, and poor trafficability because of the soft nature of the muck. This soil is not suited to septic tank absorption fields because of wetness and ponding.</td>
</tr>
<tr>
<td>SvA</td>
<td>Summerville loam, 0 to 2 percent slopes - Well drained, nearly level loam soil that has a loam subsoil which is underlain by dolomite bedrock at 10 to 20 inches. Permeability is moderate to the bedrock. Available water capacity is very low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are droughtiness and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>SvB</td>
<td>Summerville loam, 2 to 6 percent slopes - Well drained, gently sloping loam soil that has a loam subsoil which is underlain by dolomite bedrock at 10 to 20 inches. Permeability is moderate to the bedrock. Available water capacity is very low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, droughtiness, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>SvC</td>
<td>Summerville loam, 6 to 12 percent slopes - Well drained, sloping loam soil that has a loam subsoil which is underlain by dolomite bedrock at 10 to 20 inches. Permeability is moderate to the bedrock. Available water capacity is very low. Seasonal water table is at a depth of more than 6 feet. Management concerns for crop production are erosion, droughtiness, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth to bedrock.</td>
</tr>
<tr>
<td>SvD</td>
<td>Summerville loam, 12 to 20 percent slopes - Well drained, moderately steep loam soil that has a loam subsoil which is underlain by dolomite bedrock at 10 to 20 inches. Permeability is moderate to the bedrock. Available water capacity is very low. Seasonal water table is at a depth of more than 6 feet. This soil is generally not suited to crop production because of erosion, slope, droughtiness, and depth to bedrock. This soil is not suited to septic tank absorption fields because of depth of bedrock.</td>
</tr>
<tr>
<td>SOIL SYMBOL</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ud</td>
<td>Udipsamments - Well drained to excessively drained, gently sloping and sloping sandy beach deposits. Soil properties are too variable to rate.</td>
</tr>
<tr>
<td>Uo</td>
<td>Udorthents, cobbly - Excessively drained, gently sloping and sloping gravelly and cobbly beach deposits. Soil properties are too variable to rate.</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
</tr>
<tr>
<td>Wa</td>
<td>Wainola loam fine sand - Somewhat poorly drained, nearly level loamy fine sand soil that has a fine sand subsoil which underlain by a fine sandy substratum at 20 to 34 inches. Permeability is rapid. Available water capacity is low. Seasonal water table is at a depth of 0.5 to 1 feet. Management concerns for crop production are wetness, soil blowing, and by droughtiness when drained. This soil is not suited to septic tank absorption fields because of wetness.</td>
</tr>
<tr>
<td>YaA</td>
<td>Yahara fine sandy loam, 0 to 3 percent slopes - Somewhat poorly drained, nearly level and gently sloping fine sandy loam soil that has a fine sandy loam and silt loam subsoil which is underlain by a bonded silt and very fine sand substratum at 20 to 40 inches. Permeability is moderate. Available water capacity is high. Seasonal water table is at 1 to 3 feet. Management concerns for crop production are wetness and soil blowing. Special design must be used when installing drainage tile to prevent clogging. This soil is not suited to septic tank absorption fields because of wetness.</td>
</tr>
<tr>
<td>Yv</td>
<td>Yahara Variant silt loam - Poorly drained, nearly level silt loam soil that has a silt loam subsoil which is underlain by a bonded silt and very fine sand substratum at 15 to 30 inches. Permeability is moderate. Available water capacity is high. Seasonal water table is at less than 1 foot or is ponded above the surface. Management concern for crop production is wetness. Special design must be used when installing drainage tile to prevent clogging. This soil is not suited to septic tank absorption fields because of wetness.</td>
</tr>
</tbody>
</table>